organic compounds

 $\mu = 0.07 \text{ mm}^{-1}$

T = 298 (2) K

 $R_{\rm int} = 0.038$

316 parameters

 $\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min}$ = -0.18 e Å⁻³

 $0.40 \times 0.20 \times 0.06 \text{ mm}$

4794 independent reflections

3179 reflections with $I > 2\sigma(I)$

H-atom parameters not refined

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,1'-(1,4-Phenylenedimethylene)dipyridinium bis(tetraphenylborate)

Yang-Jie Wu, Xiu-Cun Liu, Chen-Xia Du and Yun-Yin Niu*

Department of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China Correspondence e-mail: niuyy@zzu.edu.cn

Received 16 June 2007; accepted 4 July 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.058; wR factor = 0.149; data-to-parameter ratio = 15.2.

The title compound, $C_{18}H_{18}N_2^{2+}\cdot 2B(C_6H_5)_4^{-}$, consists of a 1,1'-(1,4-phenylenedimethylene)dipyridinium cation located on an inversion center and two tetraphenylborate anions. There are $C-H\cdots\pi$ interactions of intermediate strength between the pyridinium group of the cation and the surrounding anions.

Related literature

For related literature, see: Kiviniemi et al. (2001); Liu, Liao et al. (2007); Liu, Shi et al. (2007).

Experimental

Crystal data $C_{18}H_{18}N_2^{2+}\cdot 2C_{24}H_{20}B^ M_r = 900.76$ Triclinic, *P*1 a = 9.8194 (8) Å

b = 10.3074 (9) Å
c = 13.3980(12)
$\alpha = 97.224 \ (2)^{\circ}$
$\beta = 92.143 \ (2)^{\circ}$

 $\gamma = 111.530 \ (2)^{\circ}$ $V = 1246.28 \ (19) \ \text{\AA}^{3}$ Z = 1Mo $K\alpha$ radiation

Data collection

Bruker APEX II CCD areadetector diffractometer Absorption correction: none 9445 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.149$ S = 1.004794 reflections

Table 1

Hydrogen-bond geometry (Å, °).

 $Cg1,\ Cg2$ and Cg3 are the centroids of the C16–C21, C22–C27 and C28–C33 phenyl rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C9-H9\cdots N1^{i}$	0.93	2.57	2.897 (3)	101
$C1 - H1 \cdots Cg1$	0.93	2.44	3.313 (2)	156
$C4 - H4 \cdot \cdot \cdot Cg3^{ii}$	0.93	2.63	3.280 (2)	127
$C5-H5\cdots Cg2^{ii}$	0.93	2.53	3.446 (2)	168

Symmetry codes: (i) -x + 2, -y + 2, -z + 1; (ii) x + 1, y + 1, z.

Data collection: *APEX2* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

The authors thank the National Natural Science Foundation (No. 20671083), the Henan Province Excellent Youth Foundation (Nos. 0612002800) and Jinan Henghua Science and Technology Co. Ltd for supporting this work. We also thank Luoyang Normal College for the diffraction measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2181).

References

Bruker (2001). APEX2, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Kiviniemi, S., Nissinen, M., Alaviuhkola, T., Rissanen, K. & Pursiainen, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2364–2369.

Liu, X.-C., Liao, X.-C., Ran, C.-L., Niu, Y.-Y. & Ng, S. W. (2007). Acta Cryst. E63, m1780.

Liu, X.-C., Shi, J., Niu, Y.-Y., Xu, N. & Ng, S. W. (2007). Acta Cryst. E63, m1781.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o3457 [doi:10.1107/81600536807032588]

1,1'-(1,4-Phenylenedimethylene)dipyridinium bis(tetraphenylborate)

Y.-J. Wu, X.-C. Liu, C.-X. Du and Y.-Y. Niu

Comment

The tetraphenylborate ion, BPh_4^- , has been widely used as a counterion in cation complex systems. These cations include metal atoms, organic ammonium cations, bipyridinium cations and arenediazonium cations (Kiviniemi *et al.*, 2001). In our previous studies we have investigated the organo-inorganic hybrid compounds containing the 1, ω -alkylidene dipyridine cations (Liu, Liao *et al.*, 2007; Liu, Shi *et al.*, 2007). Herein we report the crystal structure of 1,1'-(1,4phenylenedimethylene)dipyridinium cation with tetraphenylborate.

The asymmetric unit of the title compound (Fig. 1), $(C_{18}H_{18}N_2)_{0.5}$ ·B $(C_6H_5)_4$, contains half a 1,1'-(1,4-phenylenedimethylene)dipyridinium cation and one tetraphenylborate anion; the cation is located on an inversion center. The cation is surrounded by four anions and interacts with three of them *via* C—H··· π interactions (Table 1 and Fig. 2).

Experimental

All chemicals used were purchased from Jinan Henghua Sci. & Tec. Co., Ltd. The salt was synthesized from the reaction of 1,1'-(1,4-phenylenedimethylene)dipyridinium dichloride (0.033 g, 0.1 mmol) in methanol (5 ml) and Na[BPh₄] (0.034 g, 0.1 mmol) in DMF (10 ml). The mixture was set aside for the formation of colorless crystals in 54% yield after several days. Anal. Calc. for $C_{33}H_{29}BN$: C 88.00, H 6.44, N 3.11%; Found: C 87.96, H 6.47, N 3.07%.

Refinement

H atoms were generated geometrically (C—H = 0.93 or 0.97 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 2. A partial packing diagram of the title compound, showing C—H $\cdots\pi$ interactions (dashed lines).

1,1'-(1,4-Phenylenedimethylene)dipyridinium bis(tetraphenylborate)

Crystal data

$C_{18}H_{18}N_2{}^{2+}\cdot 2C_{24}H_{20}B^-$	Z = 1
$M_r = 900.76$	$F_{000} = 478$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.200 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 9.8194 (8) Å	Cell parameters from 1607 reflections
b = 10.3074 (9) Å	$\theta = 1.5 - 26.0^{\circ}$
c = 13.3980 (12) Å	$\mu = 0.07 \text{ mm}^{-1}$
$\alpha = 97.224 \ (2)^{\circ}$	T = 298 (2) K
$\beta = 92.143 \ (2)^{\circ}$	Plate, colorless
$\gamma = 111.530 \ (2)^{\circ}$	$0.40 \times 0.20 \times 0.06 \text{ mm}$
$V = 1246.28 (19) \text{ Å}^3$	

Data collection

Bruker APEX II CCD area-detector diffractometer	3179 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.038$
Monochromator: graphite	$\theta_{\text{max}} = 26.0^{\circ}$
T = 298(2) K	$\theta_{\min} = 1.5^{\circ}$
φ and ω scans	$h = -12 \rightarrow 8$
Absorption correction: none	$k = -12 \rightarrow 12$
9445 measured reflections	$l = -16 \rightarrow 16$
4794 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.058$	H-atom parameters not refined
$wR(F^2) = 0.149$	$w = 1/[\sigma^2(F_o^2) + (0.0666P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\rm max} = 0.008$
4794 reflections	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
316 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

P methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
B1	0.2031 (2)	0.5217 (2)	0.23828 (15)	0.0340 (5)
C1	0.6064 (2)	0.9191 (2)	0.28743 (14)	0.0455 (6)
H1	0.5622	0.8386	0.3171	0.055*
C2	0.5276 (2)	0.9974 (2)	0.26334 (15)	0.0499 (6)
H2	0.4295	0.9705	0.2767	0.060*
C3	0.5923 (3)	1.1152 (2)	0.21966 (16)	0.0551 (6)
Н3	0.5396	1.1701	0.2046	0.066*
C4	0.7366 (3)	1.1521 (2)	0.19802 (16)	0.0552 (6)
H4	0.7814	1.2308	0.1667	0.066*
C5	0.8125 (2)	1.0725 (2)	0.22287 (16)	0.0505 (6)
Н5	0.9099	1.0967	0.2085	0.061*
C6	0.8356 (3)	0.8804 (2)	0.30283 (16)	0.0551 (6)
H6A	0.9058	0.8784	0.2542	0.066*
H6B	0.7710	0.7838	0.3052	0.066*
C7	0.9178 (2)	0.9449 (2)	0.40600 (15)	0.0422 (5)
C8	0.9777 (2)	0.8658 (2)	0.45543 (16)	0.0507 (6)
H8	0.9631	0.7745	0.4260	0.061*
C9	1.0587 (3)	0.9201 (2)	0.54765 (17)	0.0539 (6)
Н9	1.0984	0.8650	0.5793	0.065*
C10	0.2930 (2)	0.61470 (19)	0.15340 (13)	0.0339 (5)
C11	0.4208 (2)	0.5992 (2)	0.12074 (14)	0.0415 (5)
H11	0.4465	0.5281	0.1420	0.050*
C12	0.5106 (2)	0.6841 (2)	0.05859 (16)	0.0500 (6)
H12	0.5949	0.6701	0.0396	0.060*
C13	0.4750 (3)	0.7892 (2)	0.02493 (15)	0.0529 (6)
H13	0.5346	0.8467	-0.0171	0.064*
C14	0.3507 (3)	0.8083 (2)	0.05401 (16)	0.0509 (6)
H14	0.3252	0.8786	0.0311	0.061*
C15	0.2626 (2)	0.7235 (2)	0.11752 (14)	0.0420 (5)
H15	0.1797	0.7399	0.1370	0.050*
C16	0.3055 (2)	0.60729 (18)	0.34397 (13)	0.0335 (5)
C17	0.4272 (2)	0.5815 (2)	0.38034 (14)	0.0395 (5)
H17	0.4453	0.5050	0.3478	0.047*

C18	0.5221 (2)	0.6652 (2)	0.46290 (16)	0.0507 (6)
H18	0.6019	0.6443	0.4844	0.061*
C19	0.4984 (3)	0.7787 (2)	0.51278 (16)	0.0578 (7)
H19	0.5613	0.8347	0.5683	0.069*
C20	0.3803 (3)	0.8085 (2)	0.47958 (16)	0.0552 (6)
H20	0.3636	0.8856	0.5125	0.066*
C21	0.2863 (2)	0.7241 (2)	0.39730 (14)	0.0425 (5)
H21	0.2069	0.7461	0.3766	0.051*
C22	0.1924 (2)	0.35750 (19)	0.21150 (14)	0.0371 (5)
C23	0.1626 (2)	0.2894 (2)	0.11149 (17)	0.0548 (6)
H23	0.1498	0.3392	0.0610	0.066*
C24	0.1514 (3)	0.1520 (3)	0.0841 (2)	0.0778 (9)
H24	0.1314	0.1112	0.0165	0.093*
C25	0.1699 (3)	0.0756 (3)	0.1571 (3)	0.0847 (10)
H25	0.1644	-0.0165	0.1391	0.102*
C26	0.1965 (3)	0.1365 (3)	0.2568 (3)	0.0727 (8)
H26	0.2087	0.0857	0.3068	0.087*
C27	0.2053 (2)	0.2746 (2)	0.28269 (18)	0.0525 (6)
H27	0.2205	0.3131	0.3507	0.063*
C28	0.0339 (2)	0.51288 (19)	0.24453 (14)	0.0367 (5)
C29	-0.0361 (2)	0.4910 (2)	0.33345 (16)	0.0471 (6)
H29	0.0169	0.4856	0.3907	0.056*
C30	-0.1818 (3)	0.4770 (2)	0.3396 (2)	0.0636 (7)
H30	-0.2243	0.4625	0.4001	0.076*
C31	-0.2631 (3)	0.4847 (3)	0.2560 (2)	0.0695 (8)
H31	-0.3598	0.4778	0.2602	0.083*
C32	-0.2002 (3)	0.5025 (2)	0.1667 (2)	0.0633 (7)
H32	-0.2547	0.5061	0.1095	0.076*
C33	-0.0560 (2)	0.5152 (2)	0.16148 (17)	0.0478 (6)
H33	-0.0163	0.5259	0.0997	0.057*
N1	0.74748 (19)	0.95834 (17)	0.26829 (12)	0.0426 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
B1	0.0316 (12)	0.0335 (11)	0.0338 (12)	0.0088 (9)	0.0024 (9)	0.0047 (9)
C1	0.0451 (13)	0.0409 (12)	0.0370 (11)	0.0012 (10)	0.0015 (10)	0.0042 (9)
C2	0.0422 (13)	0.0529 (14)	0.0466 (13)	0.0113 (11)	-0.0045 (10)	0.0013 (10)
C3	0.0562 (16)	0.0518 (14)	0.0544 (14)	0.0204 (12)	-0.0155 (12)	0.0031 (11)
C4	0.0580 (16)	0.0441 (13)	0.0564 (14)	0.0088 (11)	-0.0043 (12)	0.0169 (10)
C5	0.0403 (13)	0.0487 (13)	0.0534 (13)	0.0047 (10)	0.0035 (10)	0.0120 (11)
C6	0.0610 (16)	0.0481 (13)	0.0570 (14)	0.0246 (12)	-0.0064 (12)	0.0007 (11)
C7	0.0412 (12)	0.0399 (11)	0.0472 (12)	0.0165 (9)	0.0046 (9)	0.0087 (9)
C8	0.0609 (15)	0.0400 (12)	0.0554 (14)	0.0260 (11)	-0.0008 (11)	0.0018 (10)
C9	0.0638 (16)	0.0484 (13)	0.0573 (14)	0.0314 (12)	-0.0077 (11)	0.0073 (11)
C10	0.0326 (11)	0.0337 (10)	0.0307 (10)	0.0084 (8)	0.0005 (8)	0.0010 (8)
C11	0.0394 (12)	0.0414 (11)	0.0428 (11)	0.0134 (9)	0.0051 (9)	0.0081 (9)
C12	0.0419 (13)	0.0538 (14)	0.0482 (13)	0.0103 (11)	0.0135 (10)	0.0066 (11)

C13	0.0594 (16)	0.0486 (13)	0.0386 (12)	0.0035 (12)	0.0122 (11)	0.0126 (10)
C14	0.0611 (15)	0.0407 (12)	0.0473 (13)	0.0126 (11)	0.0037 (11)	0.0132 (10)
C15	0.0453 (12)	0.0374 (11)	0.0411 (11)	0.0129 (10)	0.0037 (9)	0.0061 (9)
C16	0.0304 (11)	0.0321 (10)	0.0350 (10)	0.0063 (8)	0.0059 (8)	0.0105 (8)
C17	0.0361 (12)	0.0359 (10)	0.0423 (11)	0.0082 (9)	0.0001 (9)	0.0087 (9)
C18	0.0421 (13)	0.0533 (14)	0.0511 (13)	0.0093 (10)	-0.0074 (10)	0.0174 (11)
C19	0.0550 (15)	0.0604 (15)	0.0401 (12)	0.0045 (12)	-0.0103 (11)	0.0009 (11)
C20	0.0576 (15)	0.0479 (13)	0.0471 (13)	0.0092 (11)	0.0058 (11)	-0.0072 (10)
C21	0.0387 (12)	0.0423 (12)	0.0432 (11)	0.0132 (9)	0.0040 (9)	0.0007 (9)
C22	0.0265 (10)	0.0347 (10)	0.0469 (12)	0.0075 (8)	0.0056 (9)	0.0057 (9)
C23	0.0566 (15)	0.0389 (12)	0.0555 (14)	0.0050 (10)	0.0167 (11)	-0.0040 (10)
C24	0.0744 (19)	0.0477 (15)	0.088 (2)	0.0017 (14)	0.0370 (16)	-0.0168 (15)
C25	0.0541 (17)	0.0379 (14)	0.159 (3)	0.0157 (13)	0.0357 (19)	-0.0005 (19)
C26	0.0406 (14)	0.0446 (14)	0.134 (3)	0.0135 (11)	-0.0015 (15)	0.0274 (16)
C27	0.0370 (12)	0.0394 (12)	0.0757 (16)	0.0078 (10)	-0.0050 (11)	0.0118 (11)
C28	0.0326 (11)	0.0292 (10)	0.0435 (11)	0.0074 (8)	0.0024 (9)	0.0015 (8)
C29	0.0352 (12)	0.0446 (12)	0.0528 (13)	0.0065 (9)	0.0080 (10)	0.0012 (10)
C30	0.0471 (15)	0.0517 (14)	0.0799 (18)	0.0079 (11)	0.0253 (13)	-0.0061 (12)
C31	0.0325 (13)	0.0546 (15)	0.118 (2)	0.0180 (11)	0.0076 (15)	-0.0039 (15)
C32	0.0392 (14)	0.0535 (15)	0.095 (2)	0.0164 (11)	-0.0103 (14)	0.0091 (13)
C33	0.0361 (12)	0.0430 (12)	0.0600 (14)	0.0099 (9)	-0.0022 (10)	0.0092 (10)
N1	0.0456 (11)	0.0380 (9)	0.0397 (10)	0.0108 (8)	-0.0036 (8)	0.0062 (7)

Geometric parameters (Å, °)

1.637 (3)	C15—H15	0.9300
1.649 (3)	C16—C21	1.399 (3)
1.649 (3)	C16—C17	1.399 (3)
1.650 (3)	C17—C18	1.389 (3)
1.338 (3)	С17—Н17	0.9300
1.364 (3)	C18—C19	1.373 (3)
0.9300	C18—H18	0.9300
1.364 (3)	C19—C20	1.376 (3)
0.9300	С19—Н19	0.9300
1.378 (3)	C20—C21	1.385 (3)
0.9300	C20—H20	0.9300
1.356 (3)	C21—H21	0.9300
0.9300	C22—C27	1.390 (3)
1.349 (3)	C22—C23	1.399 (3)
0.9300	C23—C24	1.380 (3)
1.477 (3)	С23—Н23	0.9300
1.515 (3)	C24—C25	1.377 (4)
0.9700	C24—H24	0.9300
0.9700	C25—C26	1.375 (4)
1.381 (3)	C25—H25	0.9300
1.383 (3)	C26—C27	1.392 (3)
1.378 (3)	C26—H26	0.9300
0.9300	С27—Н27	0.9300
1.383 (3)	C28—C29	1.399 (3)
	1.637 (3) 1.649 (3) 1.649 (3) 1.650 (3) 1.338 (3) 1.364 (3) 0.9300 1.364 (3) 0.9300 1.378 (3) 0.9300 1.349 (3) 0.9300 1.477 (3) 1.515 (3) 0.9700 0.9700 1.381 (3) 1.378 (3) 0.9300 1.378 (3) 0.9300 1.378 (3) 0.9300 1.378 (3) 0.9300 1.383 (3)	1.637 (3) $C15$ —H15 $1.649 (3)$ $C16$ —C21 $1.649 (3)$ $C16$ —C17 $1.650 (3)$ $C17$ —C18 $1.338 (3)$ $C17$ —H17 $1.364 (3)$ $C18$ —C19 0.9300 $C18$ —H18 $1.364 (3)$ $C19$ —C20 0.9300 $C19$ —H19 $1.378 (3)$ $C20$ —C21 0.9300 $C20$ —H20 $1.356 (3)$ $C21$ —H21 0.9300 $C22$ —C27 $1.349 (3)$ $C22$ —C23 0.9300 $C23$ —C24 $1.477 (3)$ $C23$ —H23 $1.515 (3)$ $C24$ —C25 0.9700 $C24$ —H24 0.9700 $C25$ —C26 $1.381 (3)$ $C26$ —C27 $1.378 (3)$ $C26$ —H26 0.9300 $C27$ —H27 $1.383 (3)$ $C26$ —H26 0.9300 $C27$ —H27 $1.383 (3)$ $C28$ —C29

С9—Н9	0.9300	C28—C33	1.402 (3)
C10-C15	1.396 (3)	C29—C30	1.391 (3)
C10-C11	1.401 (3)	С29—Н29	0.9300
C11—C12	1.381 (3)	C30—C31	1.379 (4)
C11—H11	0.9300	С30—Н30	0.9300
C12—C13	1.375 (3)	C31—C32	1.369 (4)
C12—H12	0.9300	C31—H31	0.9300
C13—C14	1.368 (3)	C32—C33	1.378 (3)
С13—Н13	0.9300	С32—Н32	0.9300
C14—C15	1.387 (3)	С33—Н33	0.9300
C14—H14	0.9300		
C28—B1—C10	114.81 (16)	C17—C16—B1	123.67 (16)
C28—B1—C22	106.03 (15)	C18—C17—C16	122.81 (19)
C10—B1—C22	109.62 (16)	С18—С17—Н17	118.6
C28—B1—C16	111.05 (15)	C16—C17—H17	118.6
C10—B1—C16	101.99 (14)	C19—C18—C17	120.1 (2)
C22—B1—C16	113.55 (16)	C19—C18—H18	120.0
N1—C1—C2	119.8 (2)	C17—C18—H18	120.0
N1—C1—H1	120.1	C18—C19—C20	119.19 (19)
C2—C1—H1	120.1	C18—C19—H19	120.4
C1—C2—C3	120.1 (2)	С20—С19—Н19	120.4
C1—C2—H2	120.0	C19—C20—C21	120.2 (2)
С3—С2—Н2	120.0	С19—С20—Н20	119.9
C2—C3—C4	119.4 (2)	C21—C20—H20	119.9
С2—С3—Н3	120.3	C20—C21—C16	122.9 (2)
С4—С3—Н3	120.3	C20—C21—H21	118.6
C5—C4—C3	119.3 (2)	C16—C21—H21	118.6
С5—С4—Н4	120.4	C27—C22—C23	114.86 (19)
C3—C4—H4	120.4	C27—C22—B1	124.77 (17)
N1—C5—C4	120.4 (2)	C23—C22—B1	120.32 (18)
N1—C5—H5	119.8	C24—C23—C22	123.2 (2)
С4—С5—Н5	119.8	С24—С23—Н23	118.4
N1—C6—C7	112.98 (16)	С22—С23—Н23	118.4
N1—C6—H6A	109.0	C25—C24—C23	119.8 (3)
С7—С6—Н6А	109.0	C25—C24—H24	120.1
N1—C6—H6B	109.0	C23—C24—H24	120.1
С7—С6—Н6В	109.0	C26—C25—C24	119.4 (2)
Н6А—С6—Н6В	107.8	C26—C25—H25	120.3
C8—C7—C9 ⁱ	117.79 (19)	C24—C25—H25	120.3
C8—C7—C6	118.02 (18)	C25—C26—C27	119.7 (3)
C9 ⁱ —C7—C6	124.15 (19)	C25—C26—H26	120.1
C9—C8—C7	121.02 (19)	С27—С26—Н26	120.1
С9—С8—Н8	119.5	C22—C27—C26	122.9 (2)
С7—С8—Н8	119.5	С22—С27—Н27	118.5
C8—C9—C7 ⁱ	121.2 (2)	С26—С27—Н27	118.5
С8—С9—Н9	119.4	C29—C28—C33	114.58 (19)
C7 ⁱ —C9—H9	119.4	C29—C28—B1	121.42 (17)
C15—C10—C11	114.40 (18)	C33—C28—B1	123.82 (18)

C15—C10—B1	125.01 (18)	C30—C29—C28	122.6 (2)
C11-C10-B1	120.16 (17)	С30—С29—Н29	118.7
C12-C11-C10	123.4 (2)	С28—С29—Н29	118.7
C12—C11—H11	118.3	C31—C30—C29	120.0 (2)
C10-C11-H11	118.3	С31—С30—Н30	120.0
C13—C12—C11	119.8 (2)	С29—С30—Н30	120.0
C13—C12—H12	120.1	C32—C31—C30	119.3 (2)
C11—C12—H12	120.1	С32—С31—Н31	120.3
C14—C13—C12	119.2 (2)	С30—С31—Н31	120.3
C14—C13—H13	120.4	C31—C32—C33	120.0 (2)
C12—C13—H13	120.4	С31—С32—Н32	120.0
C13—C14—C15	120.4 (2)	С33—С32—Н32	120.0
C13—C14—H14	119.8	C32—C33—C28	123.4 (2)
C15-C14-H14	119.8	С32—С33—Н33	118.3
C14—C15—C10	122.8 (2)	С28—С33—Н33	118.3
C14—C15—H15	118.6	C1—N1—C5	121.03 (19)
C10-C15-H15	118.6	C1—N1—C6	119.39 (18)
C21—C16—C17	114.86 (16)	C5—N1—C6	119.48 (19)
C21—C16—B1	121.03 (17)		
N1—C1—C2—C3	0.1 (3)	B1-C16-C21-C20	-172.40 (19)
C1—C2—C3—C4	1.6 (3)	C28—B1—C22—C27	-94.2 (2)
C2—C3—C4—C5	-1.6 (3)	C10—B1—C22—C27	141.32 (19)
C3—C4—C5—N1	0.0 (3)	C16—B1—C22—C27	28.0 (3)
N1—C6—C7—C8	166.3 (2)	C28—B1—C22—C23	83.1 (2)
N1—C6—C7—C9 ⁱ	-16.1 (3)	C10—B1—C22—C23	-41.4 (2)
C9 ⁱ —C7—C8—C9	-0.3 (4)	C16—B1—C22—C23	-154.74 (18)
C6—C7—C8—C9	177.4 (2)	C27—C22—C23—C24	-2.1 (3)
C7—C8—C9—C7 ⁱ	0.3 (4)	B1—C22—C23—C24	-179.6 (2)
C28—B1—C10—C15	25.6 (2)	C22—C23—C24—C25	0.0 (4)
C22—B1—C10—C15	144.80 (17)	C23—C24—C25—C26	1.3 (4)
C16—B1—C10—C15	-94.6 (2)	C24—C25—C26—C27	-0.4 (4)
C28—B1—C10—C11	-162.31 (15)	C23—C22—C27—C26	3.0 (3)
C22—B1—C10—C11	-43.1 (2)	B1—C22—C27—C26	-179.58 (19)
C16—B1—C10—C11	77.51 (19)	C25—C26—C27—C22	-1.9 (4)
C15-C10-C11-C12	0.3 (3)	C10—B1—C28—C29	-153.73 (17)
B1-C10-C11-C12	-172.63 (17)	C22—B1—C28—C29	85.1 (2)
C10-C11-C12-C13	-0.7 (3)	C16—B1—C28—C29	-38.7 (2)
C11—C12—C13—C14	0.2 (3)	C10—B1—C28—C33	31.4 (2)
C12-C13-C14-C15	0.7 (3)	C22—B1—C28—C33	-89.8 (2)
C13-C14-C15-C10	-1.1 (3)	C16—B1—C28—C33	146.43 (18)
C11-C10-C15-C14	0.6 (3)	C33—C28—C29—C30	-1.8 (3)
B1-C10-C15-C14	173.11 (17)	B1-C28-C29-C30	-177.17 (18)
C28—B1—C16—C21	-37.3 (2)	C28—C29—C30—C31	-0.1 (3)
C10—B1—C16—C21	85.5 (2)	C29—C30—C31—C32	1.6 (4)
C22—B1—C16—C21	-156.69 (17)	C30—C31—C32—C33	-1.2 (4)
C28—B1—C16—C17	150.74 (18)	C31—C32—C33—C28	-0.9 (3)
C10—B1—C16—C17	-86.5 (2)	C29—C28—C33—C32	2.4 (3)
C22—B1—C16—C17	31.4 (3)	B1—C28—C33—C32	177.55 (19)

C21-C16-C17-C18	-0.1 (3)	C2-C1-N1-C5	-1.8 (3)
B1-C16-C17-C18	172.29 (19)	C2-C1-N1-C6	174.56 (17)
C16-C17-C18-C19	0.2 (3)	C4C5N1C1	1.7 (3)
C17—C18—C19—C20	-0.4 (3)	C4—C5—N1—C6	-174.63 (18)
C18-C19-C20-C21	0.5 (3)	C7—C6—N1—C1	-92.6 (2)
C19—C20—C21—C16	-0.4 (3)	C7—C6—N1—C5	83.8 (2)
C17—C16—C21—C20	0.2 (3)		
Symmetry codes: (i) $-x+2, -y+2, -z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C9—H9····N1 ⁱ	0.93	2.57	2.897 (3)	101
C1—H1···Cg1	0.93	2.44	3.313 (2)	156
C4—H4···Cg3 ⁱⁱ	0.93	2.63	3.280 (2)	127
C5—H5···Cg2 ⁱⁱ	0.93	2.53	3.446 (2)	168
Symmetry codes: (i) $-x+2$, $-y+2$, $-z+1$; (ii) $x-2$	+1, <i>y</i> +1, <i>z</i> .			

